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We present a dual-reciprocity boundary element method (DRBEM) to investigate
bulk surfactant transport dynamics in a free-surface flow system under steady-state
conditions. This free-surface flow system consists of semi-infinite bubble progression
in a rigid axisymmetric capillary tube. Once adsorbed to the air—liquid interface
with a surface concentration, surfactant alters the interfacial surface tensjon
As the interfacial stress balance, which governs the fluid mechanics, is a function
of y, a strong coupling exists between surfactant transport dynamics and the fluid
mechanics (physicochemical hydrodynamics). To model this problem over a range
of bulk concentrationsC, the bulk convective/diffusive transport of surfactant to
the interface must be calculated. In this paper, DRBEM is used to simulate the
bulk convection—diffusion relationship while the boundary element method (BEM)
is used to solve Stokes flow, and a finite-difference method is used to solve the surface
transport equation under steady-state conditions. A nonlinear Langmuir adsorption
model is used to determine the surfactant equation of gtatef (I"). The validity
of the DRBEM is first demonstrated by comparing computational and analytical
solutions for a test problem. Next, the computational algorithm is used to calculate the
bulk concentration field surrounding the bubble as a function of the far-downstream
guantity of surfactantC,, and its influence on interfacial dynamics. These profiles
clearly demonstrate the importance of accurately calculating the bulk concentration
field under moderat&, conditions. In addition, the variation of mechanical properties
of this system as a function €, indicates that the interfacial pressure jump can be
significantly larger when the bulk transport of surfactant to the interface is limited.
(© 2001 Academic Press
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1. INTRODUCTION

The goal of this paper is to describe methods for computing bulk-phase convectic
diffusion transport dynamics of surface-active substances (surfactants) in multiphase f
surface flows. Transport in these systems can be very complex because of interac
between the surfactant and the mechanical properties of the system (physicochemica
drodynamics). As an example, we consider the mechanics of bubble progression in a fl
filled capillary tube which is of interest in several industrial and clinical environments. Tt
system has been used to model two-phase flow through porous media and therefore
industrial applications related to foam mobility control and enhanced oil recovery. The fl
of bubbles or drops in a capillary tube also has clinical relevance since this system ca
used to model the flow of blood cells through capillaries [22] as well as the embolic eve
that occur when air bubbles appear in the microcirculation during surgery. In addition,
progression of a finger of air in a flexible or rigid tube has been used to model the reoper
of collapsed or obstructed pulmonary airways [7, 31].

The original theoretical investigation of semi-infinite bubble progression was perform
by Bretherton [4] and Park and Homsy [19] using lubrication theory. However, the lub
cation analysis of this system is only valid at very small capillary numBar< 102,
whereCa= uU/y, u is the fluid viscosity, U is the bubble velocity, apdis the surface
tension. Several investigators have used a variety of computational techniques to of
results at large€a under constant surface tension conditions. Reinelt and Saffman [2
used a finite-difference formulation in conjunction with a multigrid scheme to obtain r
sults at 102 < Ca < 2. Other investigators [9, 27] have used the finite element methc
(FEM) to obtain results at I8 < Ca < 10'. Martinez and Udell [15, 16] obtained similar
results using the more efficient and accurate boundary element method (BEM). Half
and Gaver [11] presented a boundary element solution for the time-dependent motio
a semi-infinite bubble in a two-dimensional channel. Their study, which could simule
very large range of€a (10~ < Ca < 10%), used a mixed boundary condition technique tc
improve the accuracy of the standard BEM formulation.

In addition to these surfactant-free studies, several investigators [10, 24, 28] have stu
the interaction between surfactant physicochemistry and fluid mechanics in a semi-infi
bubble progression model. Ratulowski and Chang [24] found that the presence of trace q
tities of surfactants could increase the dimensionless reopening pressures under diffu
limited conditions. Stebe and BaetBiesel [28] used lubrication theory to demonstrate
thatanincrease in the dimensionless pressure could also occur at elevated surfactant co
trations if adsorption processes were slow. A limitation of these models is the assump
of static equilibrium in the bubble cap region. Specifically, the surface tension in the bub
cap region was assumed to be uniform and equal to the equilibrium valu&hus, these
studies do not capture the O(1) deviations from equilibrium that may arise in this syste

The most common technique to compute nonequilibrium surfactant interactions i
free-surface system is a combined BEM and finite difference scheme. Specifically, Bl
is capable of modeling Stokes flow conditions, while the finite difference scheme can
used to solve the surface transport equations. Several investigators have used this tech
to study the effect of insoluble surfactants on the surface of closed bubbles and drops.
an insoluble surfactant, the bulk concentration is not important since surfactant molec
reside only on the interface. Stone and Leal [29] investigated the deformation and bres
of liquid drops, while Millikenet al.[17] and Eggletoret. al.[6] studied the stretching of
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a viscous drop under uniaxial extensional flow conditions. Recently, Johnson and Bor
[12] used the boundary integral technique to study the effects of surfactant on the mot
and deformation of finite liquid drops in Poiseuille flow through circular tubes. Yap ar
Gaver [31] used this technique to investigate the importance of surfactant physicochemi
in flexible-walled systems intended to emulate collapsible airways. They predicted t
surfactant uptake could significantly influence the mechanics of airway reopening.

Note that none of these hybrid BEM-finite difference techniques can simulate the bu
phase convection—diffusion transport dynamics of surfactant. However, experiments h
demonstrated that the bulk transport of pulmonary surfactants can significantly influel
the physicochemical hydrodynamic behavior of the system [8]. Therefore, in the pres
study, we seek to develop methods that are capable of simulating bulk surfactant trans
dynamics under conditions that are far from equilibrium. To do so, we have implemente
technique known as the dual-reciprocity boundary element method (DRBEM) to simul
surfactant bulk transport dynamics [20]. This DRBEM scheme couples with the BEM a
finite difference schemes, which have been shown to accurately compute the surfac
physicochemical hydrodynamics in these free-surface flows.

2. DUAL-RECIPROCITY BOUNDARY ELEMENT METHOD

To accomplish the goal of investigating bulk transport dynamics in free-surface flov
we first need to develop techniques for simulating convective—diffusive transport. Solvi
the bulk convection—diffusion equation in a free-surface geometry using standard fin
element or finite-difference techniques is complicated because of the irregular internal ir
structure that might exist. Instead, we implement the dual-reciprocity boundary elem
method (DRBEM) [20] which can efficiently simulate the steady-state convection—diffusi
equation. As will be demonstrated below, this method is grid-free (but still uses interr
nodes), and can be efficiently implemented in a manner similar to the boundary elerr
method. Below, we present the details of this method, and validate this approach by soly
a model test problem and comparing analytical and computational results. Then, in
remainder of this paper, we implement this algorithm to solve the bulk transport of surfact
during the physiologically significant problem of bubble progression in arigid capillary tuk
as a demonstration of the usefulness of this technique in free-surface flows.

2.1. Method Implementation

Under steady-state conditions, the bulk concentration f&{d, r ), will be governed by
the dimensionless convection—diffusion equation

V2C = Pe(u - V)C, (2.1)

wherePe= U R/Dp is the Peclet number relating convection to diffusion in the systen
Do is the bulk diffusion coefficient is a velocity scale, an® is a length scale (see
Section 3 for details).

We define the right-hand side of (2.1) as the functign r), represented with the fol-
lowing approximation

N-+L
b(z.r) =Peu-V)IC =Y ¢z ;. (2.2)

=
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Here N is the number of boundary nodes, ahds the number of internal nodeg;
representdN + L radial based interpolating functions [23] (see Appendix for details), an
«; are the unknown coefficients that will be used to satisfy (2.1).

To transform (2.1) to a boundary integral equation, we specify that¢achust satisfy

¢, = V*f;. (2.3)

Inthe Appendix we present the axisymmetric formgofand f; (as well as the appropriate
derivatives) which are derived from their 3-D counterparts as detailed by Sarler [26]. Oi
fj is known, a solution of (2.1) is found by using a weighted residual technique and apply
Green's theorem [20] to create the boundary integral equation,

GC00) = / K(x.y)q dS — / Qx, yC dS,
S

S

+Y @ [ckfj +/Q(x,y)fj dSy—/K(X,y)fj’dSy]. (2.4)
S

S

HereK andQ are concentration and concentration gradient kernels given in [3}caue
coefficients which depend on whether the paifies in the interiorcy = 1) or on a smooth
boundary(ck = 1/2). The normal component of the concentration gradient at the bounde
is represented by = dC/dn, and f; = df;/dn. Note thatf; must be calculated dt
interior points as well abl boundary points. Equation (2.4) is integrated over a collocatio
vector,y, that defines the boundai§,. The solution vecto, is a function of a load vector,
X, which is defined by both internal and boundary nodes.

The DRBEM procedure involves discretizing the boundary Mg three-point quadratic
elements to obtain the discretized version of (2.4),

Neim Neim
>, [Qxycds, -3 [Kxyads,
m:lSn m:lSn

Neim Neim

N-+L
=3 wfafi+), [Quytids-d [Kaytds,). @9
m:lSn m:lSn

j=1

whereNgm is the humber of boundary elements. Performing these integrations along e
element results in the following system of linear equations,

QC — Kg = (QF — KF')a. (2.6)

Here,QandK are, respectivelyN x N + L andN x 3N/2 matricesC isanN + L vector
of boundary and internal nodal concentratianis,a 3N /2 vector of boundary concentration
gradients normal to the surfacg,is an N + L x N + L matrix of f; values,F’ is a
3N/2 x N + L matrix of f; values, andx is anN + L vector of unknown coefficients.
Note thatF is formed byN + L evaluations off; at each of theN + L boundary and
internal points, whileF" is formed byN + L evaluations off{ at 3N /2 boundary points.
We have allowed for B/2 values offj andq at theN boundary points to account for
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discontinuities of the normal vector that can exist at the intersection between two eleme
that define the corners of the domain.

In order to satisfy Eq. (2.1), we complete the DRBEM formulation by expressiimg
terms of the nodal concentration values. So, from (2.2),

2.7)

oo Pe¢_< e ac>

Fu
ar oz

whereu, andu, are respectively the radial and axial fluid velocities in an axisymmetri
coordinate system, arglisanN + L x N + L matrix formed byN + L evaluations ot

at each of theN + L boundary and internal points. The concentratibis approximated
using the same; functions used in (2.2). So,

C = ¢¢, (2.8)

whereC is anN + L vector of nodal concentrations apnds anN + L vector of unknown
coefficients. By differentiating (2.8) and using the inverse relationghip,¢1C, (2.7)
becomes,

o= {Pegbl( d)gb +u 8¢¢ )] C =[RIC, (2.9)
whereRis anN + L x N + L matrix. From this expression, (2.6) becomes
(Q—SC =Kaq, (2.10)

whereS = (QF — KF)[R]isanN x N + L matrix.

The boundary conditions can now be used to rearrange (2.10)into d, whereA is an
N + L x N + L matrix,v isanN + L vector containing unknown boundary values (con-
centration and concentration gradients) as well as the unknown internal concentration val
andd is anN + L vector containing the known boundary value information. Therefore, a
boundary and internal values can be determined by solving this system of linear equati

In summary, DRBEM requires boundary conditions, either concentration, concentrat
gradient, or a linear combination, at each node along the boundary. The use of an ir
polating function that satisfies (2.3) yields a surface integral solution to the bulk transp
equation. However, these interpolating functions are dependent on the location of inte
nodes. Therefore, the unknown internal concentrations must be determined in conjunc
with boundary values. Note that DRBEM does not require that the internal nodes be pla
in a structured fashion, although it is important to place the nodes in positions of lai
concentration gradients. Since the boundary changes shape during free-surface prob
the unstructured nature of the internal nodes eliminates the costly re-meshing step reqt
by other techniques (finite-element and finite-difference methods). As a result, the DRBI
algorithm can efficiently determine the bulk concentrations within the interior as well :
along the boundary.

2.2. Method Validation

To assess the validity of the DRBEM technigue, we solve a model problem and comp
the computational and analytical solutions. The test problem is defined by the axisymme
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FIG. 1. (a) Domain and flow field used to test the accuracy of DRBEM. Concentration profiles for tt
(b) analytical solution (c) DRBEM solution with 49 internal nodes and (d) DRBEM solution with 225 intern:
nodes.

domain shown in Fig. 1a with a stagnation flow field & —2z, u; = r). Since this flow
field contains nonzero axial and radial velocities, this problem can be used to test
accuracy of both the radial and axial terms in (2.7) and (2.9). We solve (2.1Paithl
using the following boundary conditions,

dC
— =0 atr =0;
ar atr
C=0 atz=0 and z=1; (2.11)
dcC 1 12 3
—=1 F - —e'—'—2 :1
dr 0211<2+4’2’ Z) atr

Here; F; is the confluent hypergeometric function defined by Abramowitz and Stegun [:
and the eigenvalue = 3.339, is chosen such thdC/dr = 0 atz = 1. These boundary
conditions are chosen such that (2.1) has the following analytical solutidteterl,

2 A2 r2 1 A2 3
C(r, Z) = OZAZ 1F1(Ee; l; E) 1F1(§ + Ze; E; —ZZ) s (212)
A§1F1(1+ %2 %)

for comparison to the computational prediction.
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TABLE |
Average Relative Error as a Function of the Number of
Interior, L, and Boundary Nodes, N, for the Test Problem

Average Relative Error

Number of Cat = 1), Bl 100%
Interior Nodes
L N=31 N=091
25 9.21% 1.75%
49 4.83% 0.990%
100 2.90% 0.516%
225 2.10% 0.239%
784 1.38% 0.0722%

Figure 1b demonstrates this analytical solution while Figs. 1¢c and 1d demonstrate
DRBEM solution using 49 and 225 internal points, respectively. The solution with 22
internal nodes demonstrates that the DRBEM is able to accurately predict the analyt
concentration values. As shown in Table I, the average relative error between the con
tational and analytical solution decreases as the number of internal plojritg;reases.
This decrease in error is due to the fact that a large number of internal nodes will m
accurately approximate the concentration gradients that determine the body forcé terr
in (2.2). Table | also demonstrates that the solution accuracy will be a function of the nu
ber of boundary noded\l. Specifically, the accuracy of the integrations in (2.5) depend
on the number of boundary elemeni&ym, which is a direct function oN. Therefore, at
smallN (=31) the accuracy of the boundary integrations limits the accuracy of the soluti
and thus the average relative error does not approach zero atllaidewever, at large
N(=91), where boundary integrations are more accurate, the average relative error ¢
approach zero at larde. We will now demonstrate the use of the DRBEM for simulating
the bulk-transport of surfactant during a model free-surface flow problem.

3. FREE-SURFACE PROBLEM FORMULATION

In the remainder of this paper we investigate a theoretical model of semi-infinite bub
progression in a rigid axisymmetric capillary tube with a radiu@-ig. 2). The displaced

. . ¢ ot ful
Finger of Air '
8 Swa Fluid
R; R ¥ _ :
f Py =0
3 ~
I 4 [
Y

FIG. 2. Schematic representation of the theoretical model in an axisymmetric coordinate system.
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fluid, which can contain surfactant, has a viscogignd density. We consider the steady-
state movement of this bubble with a forward velotityThe air—liquid interface is defined
at each point by a unit normdi,= (n, n;), a unit tangent, = (t,, t,), and a fluid velocity,

u* = (u3, uy), vector. The gas phase viscosity is assumed to be negligible, the finger wi
in the thin film region isR¢, and the constant air pressure inside the bubble is used as 1
reference pressut®;,, = 0). Surfactant molecules can exist either in the bulk solution witl
concentratiorC*, at the subsurface with concentratiGg, or adsorbed onto the interface
with concentratio™. The shape of the air-liquid interfacé(s*) and z*(s*), the local
surface tensiopr*(s*), the surface concentratidrt (s*), and the subsurface concentration
CZ(s*) are functions of the arc-length variatste

3.1. Governing Equations

We use the following scaling arguments to obtain dimensionless governing equation

s*=Rs r*=Rr, Z2=Rz u*=Uu
* * * * Yeq (31)
C"'=CoC, y"=veqy, I'"'=Txl, P*= FH-

Here starred () variables indicate dimensional quantities, and the associated unstar
variables are dimensionless. The te@y is the far-field bulk concentrationq is the
equilibrium surface tensiort;,, known as the maximum monolayer packing value is the
surface concentration when all adsorption sites are filled Jarglthe dimensionless fluid
pressure.

Hydrodynamics. With these scales, the dimensionless Navier—Stokes and continu
equations are

d
CaRe<8$ +(u- V)u> +VIl=Cav? and V-u=0. (3.2)

Here,Re= pU R/u is the Reynolds number which relates inertial to viscous forces, ar
Ca= uU/yeq is the Capillary number which relates viscous to surface tension force
When inertial forces are negligibleRe'Ca « 1), Eq. (3.2) reduces to the steady-state
Stokes equations,

VIl =Cav?u and V.-u=0, (3.3)
which demonstrates that viscous stresses are balanced by the fluid pressure gradiel

complete the hydrodynamic description, we must impose boundary conditions on
domain shown in Fig. 3. At steady-state these conditions are

0
%:o, U =0 at r=0 forz>0 (3.4)
u-A=un;+un =0 atr =ry(2 (3.5)
dy
Ofluid - A = )/Kﬁ + d—);t atr =rp(2) (36)

u=n, as z— —o© 3.7
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FIG. 3. Schematic of the fluid boundary and the location of the imposed boundary conditions.

u =0 u=-1 atr=1 (3.8)
u=[282(r? - 1)|n, asz— +oo. (3.9

Here, B+ = Rt /R is the dimensionless width of the air bubble in the thin film. Equa
tion (3.4) mandates symmetry at the centerline. The kinematic boundary conditions (3
(3.7), (3.8), and (3.9) are stated in terms of the bubble-fixed reference frame at steady-<
Equation (3.5) specifies no penetration at the interface while (3.8) specifies no-slip at
tube wall. Equation (3.7) imposes a plug flow boundary condition far upstream in the ste
thin film while (3.9) imposes a parabolic Poiseuille flow far downstream which satisfies
global conservation of mass relationship. Finally, Eq. (3.6) represents the interfacial stre
balance whereq,g = —IT1 + Ca(Vu + VTu) represents the fluid stress tensey(= 0
since uair ~ 0 and P, = 0). Since the interface is a free-surface (i.e., its position an
shape are not knowe priori), boundary conditions are supplied for the velocity as well a:
the stress at the interface (3.5) and (3.6). As explained further in Section 3.3, one boun
condition (the stress balance) will be imposed and the interface shape will be iterated L
the other boundary condition (no penetration) is satisfied.

Interfacial Transport and Mechanics.Under steady-state conditions wheref = 0,
the dimensionless surface transport equation,

Vs - (Ius) = P& V2T + iy
st (3.10)
where:j, = TCs(l —T) — Syl

will govern the distribution of adsorbed surfactant molecules. Heégds a surface gra-
dient operatorys is the surface velocityPe, = U R/Dj is the surface &let number
which relates surface convection rates to surface diffusion ratesPganés the surface
diffusion coefficient. The mass flux of surfactant to the interfggejs governed by the
adsorption Stanton numbeBt, = k ', /U, Wherek, is the adsorption rate coefficient,
the desorption Stanton numb&ty = kyR/U, whereky is the desorption rate coefficient,
and the dimensionless adsorption depth; I',,/(CoR), whereC, is the far downstream
bulk concentration. The adsorption Stanton numBér, relates adsorption rates to surface
convection ratesSty relates desorption rates to surface convection rates, widleelated

to the fluid thickness that contains sufficient surfactant molecules to bring the interfac
concentration td",. Note thatSt, = St,/A is the effective adsorption parameter which
relates adsorption rates to interfacial creation rates. Equation (3.10) states that the ra
change i as a result of surface convection is balanced by a surface diffusive flux and 1
mass flux of surfactant to the interface.
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The following boundary conditions complete the surface transport problem

ar
— = at s=0 (3.11)
as
ar
— =0 as s— . (3.12)
as

These Neumann boundary conditions specify symmetry at the centerline (3.11) anc
variation in the static thin film (3.12).

The mass flux termj,, in (3.10) is based on a Langmuir model in which a certair
number of adsorption sites are available. The surface concentration when all sites are f
is known as the maximal monolayer packing concentrafigg)( Thus, the adsorption term,
(St,/A)Cs(1 —TIN), is proportional to the subsurface concentration as well as the numk
of free sites while the desorption ter@y I, is proportional to the number of filled sites.
Solving j, = 0 yields,

T St.Cs

= = Sica s (3.13)

In order to determine the relationship between surface tension and surface concentr:
(the surfactant equation of state) the thermodynamic Gibb’s relationship [18],

dy = —EI Td(nCs) (3.14)

can be used with (3.13) to obtain the nonlinear Langmuir equation of state

y(M) =1+ Eln =1 (3.15)
1—Teq
Here,El = RTTI o/ yeqiS the elasticity number which is a measure of a surfactant’s ability t
modify the interfacial surface tensioR;is the universal gas constaiitjs the temperature;
and f“eq = I'eg/ I'o s the dimensionless equilibrium surface concentration, whigges
the concentration that is in equilibrium with the far-downstream bulk concentraiipn,
Note thatl"¢q can be determined from (3.13) by setti@g= 1

N St,

Although other investigators [24] have identified the measure of a surfactant’s strength v
the Marangoni numbela, we follow the more traditional definition [28] such tHdf is
related to the ratio of Marangoni to viscous stressesNa.= El/Ca= RTIy,/uU.

Bulk Transport. The governing equation for steady-state convection and diffusion
surfactant in the bulk solution is given by

(u-v)C = Pelv?C. (3.17)

HerePe= U R/Dn, is the bulk REclet number which relates convection rates to diffusior
rates, andDn,q is the bulk diffusion coefficient. The following boundary conditions complett
the bulk transport formulation:

aC

— =0 atr=0 (3.18)
ar



544 GHADIALI, HALPERN, AND GAVER

1
@(ﬁ -V)C = StCs(1 —T) — Sy’ atr =rn(2) (3.19)
aC
— =0 asz— —o¢ (3.20)
0z
& =0 atr=1 (3.21)
ar
C=1 asz— +o. (3.22)

These boundary conditions specify symmetry at the centerline (3.18), no axial variatior
the static thin film (3.20), no surfactant flux into the tube wall (3.21), and a constant f:
downstream bulk concentration (3.22). The interfacial boundary condition (3.19) specif
continuity between the bulk diffusive flux and adsorptive/desorptive fluxes at the interfa

3.2. Computational Methods

Hydrodynamics. The boundary element method (BEM) is used to solve the hydrod
namic aspects of this problem. Ladyzhenskaya [13] showed that a solution of (3.3) co
be obtained by using Fourier transforms and applying Green'’s theorem,

1
Uk(X) = /Tik(x,y)ui dsS— Ea/Uik(X» y)tdS (3.23)
S S

where Ty and Uy, are known as traction/velocity kernels, is the velocity vector, and

7y = oquig - N is the traction vector. The axisymmetric formd§ andTix have been reported
in Becker [3]. Asx approaches a point on the boundary, (3.23) can be rewritten in discretiz
form as

N, N
elm 1 elm
6t 00 =Y [Tuxyudsi= 2> [Ukeymds,  @24)
m:lSn m:lSn

wherecy; accounts for the stress discontinuities at that occur at the surface, the bounda
discretized intoNgm, three-point quadratic elements, afid indicates the boundary of an
element. The integrands in (3.24), which are integrated over each element, can be calcu
using regular and logarithmic Gaussian quadrature techniques [11]. Upon integration (3
can be expressed as

Tw = Ut. (3.25)

HereT andU are, respectively,[d x 2N and 2N x 3N matrices, anavzj_1 = Uzj, woj =

U, toj—1 = 17j, b} = ©j, wherej =1,2, ..., N represents the number of boundary nodes
Matrix U is made larger thail to allow the stress vector to have two distinct values a
corner points where the normal vector can be discontinuous. This feature is useful du
the implementation of mixed boundary conditions at corner points (see Section 3.3). |
well-posed problem, either the velocities or the stresses are known at each node point. T
boundary conditions are used to rearrange (3.25) into a system of linear equations of the
Av = d, whereAisa 2N x 2N matrix,v is a 2N vector containing the unknown velocities
and stresses, antis a 2N vector containing the known stress or velocity information. This
system is solved for the unknown velocities and stressessing Gaussian elimination.
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Finally, once all boundary values are known, (3.23) can be used to calculate velocitie
any point inside the domain (which will be necessary for transport calculations).

Surfactant Transport. The bulk concentration fieldC(r, z), is calculated using the
DRBEM algorithm described in detail in Section 2. Note that the subsurface concent
tion, Cs, is defined by the bulk concentratiaB, at the air-liquid interface. The ter@y is
used in the surface-transport calculations below.

In order to solve the surface-transport (3.10) fgs) we implement a one-dimensional
finite difference scheme. For axisymmetric problems, Stone [29] demonstrated that (3
can be rewritten as

190 110 oI

——(Tush) = o———|r— 1-T)—Syr f

; as( Usr) Per 35 (r 33) + St,Cq( ) — Sy orr >0
9 2 9°r

2—(TUg) = — — 1-T)—Syr = 2
5s T = po— 0 + St.Cs( )— Syl atr =0, (3.26)

where the equation at= 0 is obtained by taking the appropriate limits. In order to efficiently
solve (3.26), we implemented a five-point unequally spaced central differencing scheme
the derivatives of"[2]. This method provides the surface concentrations at all interfaci
node points.

3.3. Implementation Considerations

Interfacial Geometry. The computational solution will require an accurate represent:
tion of the interfacial geometry. Specifically, the interfacial stress balance boundary c
dition at the free interface (3.6) requires an accurate calculation of the local interfac
curvatureg. In addition, the BEM and DRBEM techniques depend on an accurate calcu
tion of the normal vecton, at the interface. Finally, the FDM method requires an accurat
calculation of the interfacial arc-length variabée,

To provide these geometric properties accurately, the arc-length at each node p
s, is determined by integrating along the interface using a piecewise cubic polynon
approximationtothe interface shape. As aresult, the discrete functional relationship betw
the axial and radial position of each node and the arc-lengthz(sg. andr (s)), are known.
Cubic splines are then computed fprvs 5 andr; vs s with specified end derivative
conditions to ensure symmetry. These splines are then differentiated to compute the no
and tangential vectors,

dr dz
n, = _d787 n = d—S’ tZ =Ny, tl’ = —Nyg, (3.27)

and the interfacial curvature,

drd?z dzd% 1dz forf = 0
= = — 4+ —— >
* dsds? dsds?  rds

drd?z dzd?
* (dsds2 dsdsz> atr =0, (3.28)

where the equation at= 0 is obtained by taking the appropriate limitras> O.
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FIG. 4. Typical node distribution and computational domain size (not to scale) with segments on which t
boundary conditions are applie®) boundary nodes#) internal nodes.

Computational Domain. We use the computational domain shown in Fig. 4. Segmel
A represents the air-liquid interface, segment B models the thin film conditions, segmer
identifies the rigid capillary wall, and segment D represents the far-downstream conditic
The nodes along these segments are the boundary neflesich are used in the BEM
and DRBEM calculations. Note that the symmetry axis does not have to be modeled :
boundary in the axisymmetric BEM and DRBEM techniques. Along each surface, tht
adjacent boundary nodes are used to construct an isoparametric quadratic element
which the BEM and DRBEM integrations are performed. Since we have implemented
unequally spaced finite-differencing technique to solve (3.26), the nodes that define
interface in the BEM and DRBEM domain can be used directly in the finite-difference cz
culations. Thus, the need for interpolating surface quantitig<$Js) between two different
grids is eliminated. The distribution of internal nod®@g 6hown in Fig. 4 is used in the
DRBEM method. These nodes are placed so as to define a high internal node density
the interface where concentration gradients are expected to be large because of adsol
of surfactant from the bulk. Table Il presents the typical number of nodes used for e:
boundary segment as well as the number of internal nodes used in this study.

Table Il specifies the hydrodynamic and bulk transport variables that are applied to e
segment in Fig. 4 to satisfy the boundary conditions discussed in Section 3.1. Recall
7 is the stress vectot; = oyuig - Nr, T2 = ofuid - Nz. The application of BEM and DRBEM
with these boundary conditions would ideally produce the unknown boundary and inter
values. However, as demonstrated by Halpern and Gaver [11], the discontinuity of
normal vector at corner points results in a stress vector discontinuity which can leac
erratic results. That paper demonstrated that the use of “mixed” boundary conditions at
corner points could greatly improve the solution accuracy. Therefore, we have implemer
similar “mixed” boundary conditions in the current model as demonstrated in Table IV. F

TABLE Il
Typical Number of Nodes Used
in the Computational Domain

Segment A B C D Internal

# of Nodes 71 5 97 11 290
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TABLE 11l
Boundary Conditions Applied to the Computational Domain

Solver/Problem Segment A Segment B Segment C Segment |
BEM/Hydrodynamics 7, 7, (3.6) U, U, (3.7) U, U, (3.8) U, U, (3.9)
DRBEM/Bulk Transport dC/di(3.19) dC/di(3.20) dC/di(3.21) C(3.22)

example, at the corner node B-C, the radial stress and axial velagity.X are applied
along segment B. However, for the same node, the radial velocity and axial sttes¥ (
are applied along segment C. Thus, the unknown quantity at this node is the axial stres
segment B and the radial stress for segment C. In order to obtain a high degree of accu
we have implemented these “mixed” type boundary conditions when possible.

Iteration Technique. Under steady-state conditions, two separate interfacial bounda
conditions must be satisfied, the interfacial stress-balance (3.6) and the kinematic cond
(3.5). Therefore, one must specify one condition and iterate the interfacial shape until
other condition is satisfied. We choose to specify the stress-balance and iterate the do
shape until the kinematic condition is satisfied. Our process involves using a Newtc
method to satisfy the kinematic condition by moving node points in a direction normal
the interface shape. This is a standard method that is followed, for example, in [7, 31]. T
type of iteration process is described in detail in [5].

In the process of satisfying the interfacial stress and kinematic conditions, the surfac
transport is modified because of domain modification and the subsequent modificatio
the flow field. This subsequently can affect the stress-balance via the equation of s
(3.15), which leads to further iterations to simultaneously satisfy the transport proble
Figure 5 is a schematic representation of the steps used to solve this coupled problem a
satisfy the convergence criteria specified below. Initially, we assume an interfacial shape
surfactant distributiof (s). Note that any specification or determinatioi’@$) also results
in a surface tension distributign(s) via the equation of state (3.15). In step 1, the BEM is
used to solve (3.3) for the bulk and interfacial velociti®g, r ), us(s), giveny (s) and the
interfacial shape. In step 2, these velocities are used to solve (3.17) with the DRBEM
the bulk surfactant concentration fief€l(z, r ). Note that the solution of (3.17) is dependent
onT (s) via the boundary condition in (3.19). In step 3, the new bulk surfactant distributio
Cs(s), as well as the velocity fieldjs(s), are used to solve (3.10) with the FDM fb(s).
Note that (3.10) is dependent on the subsurface concentr&ti¢s). Therefore, even for
a fixed velocity field, the bulk transport and surface transport are coupled. We found t

TABLE IV
Mixed Boundary Conditions Applied at Corner Nodes
of the Computational Domain

Node A-B Node B-C Node C-D
Segment Segment Segment Segment Segment Segme
Solver/Problem A B B C C D
BEM/Hydrodynamic T, Tz 7, U, 7, U, U, 7, U, 7, 7, U,

DRBEM/Bulk Transport dC/dn dC/dh dC/dn C C dC/dn
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Given y(s) and interfacial shape solve |,
Hydrodynamics for u(z,r) and uy(s)

A

@ Given I'(s) and u(z,r) solve | @

Bulk T t for C(z, )
ulk Transport for C(z,0) With new y(s) use Newton’s Method
l to obtain a new interfacial shape
@ Given C,(s) and u(s) solve such that max|uy| < €ypom

Surface Transport for I'(s)

Is 8, and §.,¢ <€ NO

9
transport

®

@ Given new Y(s) solve Perform relaxation on I'

Hydrodynamics for u,(s) and recal::ulate v(s)

NO

Is max |u,| < &ynom ?

| Converged Solution

FIG. 5. Flow chart of the iterations steps used to obtain a converged solution. Note(f)atan be obtain
from I'(s) and the equation of state.

a simple fixed-point iteration scheme betweéanandI" without relaxation was sufficient
to obtain a converged solution. Convergence was determined when the sum of the rel:
errors between successive iterations, defined as

N k k+1 N k k+1
c Csi — Csi r LA i
S =D M= (3:29)
S, I

i=1 i=1

wherek is the iteration number, are less tharnsport = 10~%. In step 4, the converged

concentration profiles, which determine the neg), are used to solve (3.3) for the normal
velocity distribution along the interface,- i = u,(s). If the maximum normal velocity

is less thareynorm We have satisfied the boundary condition stated in (3.5) and accept
converged solution. Note that the valuedgomis based on the convergence test performe
in Section 4.1. However, if this convergence criteria is not satisfied, a new interface sh
must be calculated. Since changes in the stress balance at the interface, via chang
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y(S), can produce a highly nonlinear mechanical response, we found it useful to perfor
relaxation procedure dn (and thus/) before we attempted to calculate this new interfacia
shape. This relaxation procedure is performed at each node point such that

Finew: FiOId + Xg (Fi(:urrent _ Fi()ld). (3_30)

Herel'®is the concentration used in ste@ UM {s the concentration used in steg 4"
is the concentration to be used in the next iteration, \ant the damping factor. Thus,
X4 = 1 corresponds to no relaxation in tHzf""" would be used aB"®".

With the newy (s) we performed a Newton’s method iteration [21], step 6, to obtai
a new interfacial shape such that ma} < eunorm Specifically, a system of nonlinear
equations is generated by relating the normal velocity at each node to the position o
interfacial nodes. By finding the roots to this system of nonlinear equations, we can ad
the interfacial shape until méx,| < eunorm With this new interfacial shape, the iteration
procedure is repeated until a converged solution is obtained.

4. RESULTS

4.1. Convergence

Recall that in the BEM solution of the hydrodynamic problem, the interfacial stre
balance is explicitly satisfied since it is used as the boundary condition at the interfz
However, for steady-state problems, the interfacial kinematic condition (3.5) must also
satisfied. This kinematic boundary condition is satisfied whenjm&x eunorm: In order
to determine an appropriate value fQkom We implemented the iteration scheme with
various values ofnorm for the base parameter cagqg = 0.15, El = 0.5, Pe= 10, Pe, =
10°, » = 0.1, St, = 1, S = 5. These parameter values are chosen such that the bulk a
adsorptive/desorptive transport processes are both O(1), thus demonstrating the mc
ability to simulate these interrelated mechanisms. The result of these simulations, sh
in Fig. 6, indicate that all system variables approach a limiting value fgfm < 10~%
(dotted line in Fig. 6). Therefore, a solution is considered “converged,” when the follo
ing convergence criteria are simultaneously satisfied:jmd¥ < 1074, 55, < 1074, and
sb.o< 1074

err

4.2. Accuracy

The accuracy of the bulk surfactant transport solution will depend on two computatiol
variables, the domain size and the number of internal nodes. The thin-film boundary col
tions for the bulk and surface transport problems (3.20) and (3.12) are defined at an infi
axial distance from the bubble tip. Therefore, if the computational domain in the thin film
truncated prematurely, the application of these thin film boundary conditions along segn
B in Fig. 4 will result in an inaccurate solution. In addition, the DRBEM technique is know
to present numerical problems when large concentration gradients exist in the bulk fl
which, for example, would occur if convection dominates diffusion (l&geUnder these
conditions, the DRBEM solution will not be accurate if the number of internal nodes
not sufficient to capture these large gradients. As shown below, the bulk concentratio
the thin film can be determined analytically based on the dimensionless parameter val
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FIG. 7. Schematic diagram of the control volume and the surfactant mass fluxes used to derive the ana
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Therefore, we assess the transport solution accuracy by comparing the computational v
Ciim, With the analytical resulCim.

Far upstream in the static thin filitz — —o0), C andT" should be in equilibrium as
stated in (3.13),

St Chim

Chim = —a—
fim St.Ciim + St

(4.2)
Here, I'fim and Cim are used to denote the constant values in the thin film. In additio
consider the control volume in Fig. 7, which extends far enough upstream and downstre
thatthe diffusive flux is negligible at the ends. In the bubble-tip frame of reference, surfact
enters from the downstream end and exits through the upstream end by convection ir
bulk and along the interface. In dimensional terms, the overall mass balance is

Q*Co = Q*Cjy, + Uil 27 Ry (4.2)
Defining the flow rateQ* = Ux(R? — R?) and using (4.2) in dimensionless form yields,

N Ciim) (1 — B?)
1—‘fllm = 2)\,}3f . (4-3)

Equations (4.1) and (4.3) are solved simultaneously to provide the analytic value of the |
film bulk concentrationCm.

In our simulations, we calculate the relative error betw€gp andCiim. If this error is
less than 1%, we conclude that the domain size and number of internal nodes are suffi
to produce an accurate solution. For the base parameter case, we found that a domain s
—6.9 < z < 4.5 with 290 internal nodes gave a relative error of 0.07%. In all calculation
the solution accuracy according to this mass balance analysis was checked and the dc
was extended in the negatizalirection and/or more internal nodes were used to satisf
the condition that the relative errerl1%.

4.3. Concentration Profiles

In the remainder of this paper we demonstrate how the computational algorithm can |
dict the bulk concentration field surrounding the bubble as a function of the far-downstre
quantity of surfactantC,. Recall that the dimensionless adsorption deépth I'.. /(Co R)
is a direct function o, such that at low concentrations— oo and for very high concen-
trationsr — 0. In these investigations, we choose not to study the adsorption rate moc
cations that would be accompanied by changé&kirHowever, variations in would result



552 GHADIALI, HALPERN, AND GAVER

in variations in the effective adsorption parame®gr= St,/A and therefore variations in
the equilibrium pointfeq, via (3.16). Also, the strength of the surfactant dependsi@md
f“eq via (3.15). So, to maintain a fixed surfactant strength and thereby isolate the effec
changingC,, we holdSt; andf“eq constant while. is varied. To accomplish this, every vari-
ation in1 was accompanied by a modification 8, such thatSt, = ASteq/(1 — Teq)-
Under these conditions, the variationsiprovides a fixed effective adsorption rat®t,)
and a fixed equilibrium poin(f“eq). Note that the variations ik and St, are performed
about the base parameter values presented in Section 4.1.

Figure 8 demonstrates the bulk concentration field surrounding the semi-infinite b
ble for» = 1.03e-30.1,9.07 at a fixedfeq. At very largeC, (low 1) the bulk transport
processes are rapid such that the bulk concentration is uniform and nearly equal to
far-downstream valuéC = 1). Under these conditions, the system can be considered
be in bulk-equilibrium. This bulk-equilibrium situation has been analyzed by previous il
vestigators [28, 31]. However, at lo@, (large 1), the bulk transport of surfactant to the
interface is limited. As a result, very large concentration gradients develop in the b
fluid at highx values. In this case, the quantity of surfactant that can be transported
the interface by bulk convection/diffusion is reduced. As a re€ldlcan be significantly
less than the far-downstream valg. This is clearly evident in Fig. 8, and demonstrates
the importance of accurately calculating the bulk concentration field. The significance

IR [ [ [ ]]
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FIG. 8. Bulk concentration field surrounding the semi-infinite bubblefes 1.03e-3 0.1, 9.07 and constant
['eq by concurrently varyingst, = AStiTeq/(1 — [eg)(Ca= 0.15, El = 0.5, St; = 5, Pe= 10, Pe, = 1(%).
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this transport behavior is further illustrated by the system’s mechanical response as sh
below.

4.4. System Variables

To identify the mechanical affect of bulk transport limitations that occur undeiQgw
conditions, Fig. 9 demonstrates the variation of the dimensionless (a) bubble tip pres
drop, Ip; (D) tip curvatureyp; () finger width,B+; and (d) tip surface tensiom,, as a
function of for a constant eg.

Although «vp, B+, and yp are calculated as part of the iteration solution, to calculat
Iy, we follow the technique presented by Martinez and Udell [16]. The normal stre
component at the interface following (3.6), can be expressed in terms of the normal velo
at the interfaceyy,

" " aUp
A+ (ofuig + 1) = —] | +2Ca8— = yK. (4.4)
fluid n

Using continuity in an axisymmetrie-s coordinate system as— 0, (4.4) becomes

au
[1=—TI = vipkip + 4Ca—, (4.5)
tip fluid as

where Iqig is the fluid pressure at the tigliy = Hair — Huig, and Iy = 0 is the

o
n
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FIG. 9. \Variation of the dimensionless (a) bubble tip pressure, (b) tip curvature, (c) finger width, a
(d) tip surface tension as a functionjofor constanﬂ:eq by concurrently varyingt, = AS§ feq/(l - l:eq)(Ca:
0.15,El = 0.5, Sty = 5, Pe= 10, Pg, = 10%). Dotted horizontal lines indicate equilibrium values associated with
A — 0andSt, — co.
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reference pressure. Therefoi@;, has a surface tension componépfp«ip) and a vis-
cous componen#Ca dus/ds), which are explored below.

As ) increases, Fig. 9a demonstrates gt increases monotonically. This increase in
ITp is caused by the dramatic increasgtpaway fromyeq (Fig. 9d) and thus an increase in
the surface tension component (Fig. 10a). Note that altheggtecreases with increasing
(Fig. 9b), the dramatic increase;i}, governs the monotonic increase in the surface tensio
component. Although the viscous component exhibits a slightly nonmonotonic behav
(Fig. 10b), the magnitude is significantly less than the surface tension component. N
that the dotted horizontal lines in Figs. 9 and 10 indicate the equilibrium values that wo
be observed if both bulk and adsorptive transport processes are rapid sugh=that,
uniformly. Asx — 0, the bulk transport barrier is eliminat¢@s = 1) as shown in Fig. 8.
However, the system remains adsorption-limited.as 0 because of the fixed effective
adsorptionratéSt, = 10). As aresult, the system variables do not approach the equilibriu
values even at low.

To better explain the increase in the surface tension componeftfwe consider
the concentration and surface tension profiles. Figure 11 demonstrates the variation ir
dimensionless (a) surface velocity, (b) surface concentratiol,, (c) surface tensiory;
and (d) subsurface concentrati@y, as a function of interfacial position for= 1.03e-3,
0.99, 9.70. As shown in Fig. 8, the bulk transport limitations result in a decreaSg in
with increasing) (Fig. 11d). This decrease @s results in a decrease In (Fig. 11b)
and a concurrent increasejin(Fig. 11c). The increase ip, elevates the surface tension
component which is responsible for the laiJg, values observed at large Therefore,
the current model demonstrates that the quantity of surfactant transported to the inter
can be significantly limited under low bulk concentration conditions.

Although, T, y, andCg are uniform in the thin film region (s 4), surface convection
near the bubble tip (& 0) will generate a variation in these surface variables. The variatic
in y shown in Fig. 11c will generate a Marangoni streésg) which is directed from regions
of low y to regions of highy. This Marangoni stress, which rigidifies the interface, will
alter the surface velocity profiley (Fig. 11a). Specifically, at lovi, ty is small andus
near the tip exhibits negative values. However, at lakget, opposes the basic flow field
and results in positivels near the tip. Thus, Marangoni stresses, which increase wyith
reduce or eliminate retrograde surface velocities near the tip.
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The surface tension profile in Fig. 11c can also be used to explain the honmonotc
behavior of8; demonstrated in Fig. 9c. The magnitudesefis determined the magnitude
of two forces,ty and the thin film surface tensiofsim). As A initially increases, the
magnitude ofry, near the bubble tip, which is directed toward the thin film, increases. A
a result, fluid is driven into the thin film causing the film to thicken (reductiors of.



556 GHADIALI, HALPERN, AND GAVER

However, at large. the stresses that tend to cause film thinning, namely a jggebegin
to dominate the Marangoni effect. Therefore, laygg values are responsible for the film
thinning (increase if8;) that is observed at large(Fig. 9c).

The behavior of this system &% is reduced X increased), indicates the importance
of transport limitations on the mechanical behavior of the system. Clearly, if the bu
transport behavior is neglected, transport limitations will not be adequately modeled
low concentrations.

5. CONCLUSIONS

In this paper, we have demonstrated that the bulk convective/diffusive transport of
factant in a free-surface flow system can be accurately and efficiently simulated with
dual-reciprocity boundary element method. Although DRBEM requires internal nodes, i
a grid-free method and therefore has advantages over the more traditional finite-elemen
finite-difference methods. Specifically, as the domain is modified to satisfy the free-surf;
boundary conditions, FEM and FDM would require an accurate re-meshing technique
the entire domain which can be computationally expensive. In contrast, the position
each internal node in DRBEM does not have to be structurally related to the position
neighboring nodes. Therefore, the expensive re-meshing step is not required and inte
nodes can be placed in an unstructured fashion which results in increased computati
efficiency.

Our motivation for this study was the development of an understanding of surfactant tra
port dynamics during respiratory distress syndrome (RDS) of premature infants, where
well known that the primary pathology is due to a low bulk surfactant concentration. In tf
physiologically significant case, the true physicochemical dynamics cannot be adequa
understood without accounting for bulk transport processes. A limitation of the current co
putational method is that convergence becomes increasingly diffidDéidscreases to val-
ues below 102. However, Yap [30] predicted that for several adult and infant physiologic:
conditions 001 < Ca < 10. Since the current computational model is capable of accurate
simulating this range, the current theoretical analysis is applicable in-theo system.

Another limitation of this computational approach relates to the resolution of conce
tration boundary layers. These boundary layers are likely to be small atRarijée have
demonstrated that resolution of the concentration field is accurateefer 10, however
accurate calculations beyond this value may become increasingly difficult. Neverthele
the results foPe = O(10) do qualitatively demonstrate behavior that will exist when con:
vection dominates diffusion, and thus may be useful in understanding systemsReli®re
even larger.

The current model extends beyond previous models of surfactant transport in syst
that may relate to airway reopening. First, the adsorption kinetics and equation of state
modeled using the nonlinear Langmuir adsorption model. Most previous studies [24,
31] used a linear relationship between the surfactant concentration and the local sur
tension. However, linear models are only valid for small departures from equilibriur
and experiments have demonstrated that pulmonary surfactant analogues exhibit nonli
equations of state [8, 14]. Therefore, the inclusion of nonlinear Langmuir dynamics
essential to the accurate simulation of this physiological system.

In addition, the methods developed herein compute the complete steady-state |
convection—diffusion equation without approximation. Previous investigators [28, 31] ha
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investigated bulk equilibrium systems in which the bulk concentration is assumed to
uniform. This assumption is only valid if the bulk concentration is very large. Under the
conditions,C, is large(A « 1), and the solution to (3.17) is simp@(r, z) = 1.

Our studies indicate that the transport limitations that can occur at low surfactant c
centrations can lead to large reopening pressures which may damage the airway wall
thus contribute to the pathology or positive feedback cycle that can result in infant de:
Therefore, modeling RDS conditions requires a solution of the full convection—diffusi
problem as performed in this study. In the future, we will use this method to determi
the conditions under which bulk transport limitations and surfactant physicochemical pr:
erties can influence the clinically relevant reopening pressures by limiting the quantity
surfactant that can be transported to the interface.

APPENDIX

As discussed by Sarler [26] the axisymmetric interpolating functfgnand f;, can
be obtained by integrating the appropriate three-dimensional versions. For the follow
three-dimensional definition afj,

HP(X. ¥, 2) = 149X, ¥, 2) = 14/ X =X+ (Y = yp2+ 2= 22, (LD)

the three-dimensiond; is
f3° = p?/6+ p’/12 (1.2)
In an axisymmetric coordinate system=r cosf, y =r sing, X; = r; cosdj, andy; =

rj sing;. Settingd = 0 as the reference point, the following integration yields the axisyrr
metric form of¢;:

oi(r,z) = /¢ do =1+ C pE(mp)
(1.3)

2. /T
whereC, = \/(r +1)2+(z-12)? and mp,= YL
Cp
Here,E(my) is the complete elliptic integral of the second kind as defined by Abramowi
and Stegun [1]. In a similar fashion, we can determine the axisymmetric frafm,of

1 7 ad r2+rf+(z—-12)> Clopmp)
fj(r,z)z—/fj do = 5 + e

1.4
where (M) = 2(2 — M) E(mp) — (1— m3)K(mp). (4)

Here, K(m) is the complete elliptic integral of the 1st kind as defined by Abramowitz an
Stegun [1]. In addition to these expressions, the expressiod figidi can be obtained
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from (1.4),

dfy _dfy, df
da ~ dr ' ' dz °

df; r C
cTrJ =3+ ﬁ[{cg(l— 2mé) + 6r (r +rj) }E(mp) — C5(1—ma)K(mp)] (1.5)
dfi _ (z-2) N C(z—z))E(mp)

dz ~ 3 2r

Finally, because of the singular nature of the elliptic integrals as well as the functic
themselves, we must consider the following limits. First, i rj andz = z; then

2C
¢y =1+—"
T
. C3 16
I 3 (1.6)
df; E ZCpr N
an 3" 3 )™
Second, it =0 orr; = 0then
r24+r24+(z—-1z)> C3
f, = G VA (1.7)
6 12
dfi  (r  Cp(r +r1)) (z—-12z5)  Cpz—-12z)
dﬁ—(E,*T "\Ts T )™
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